
1



2

In	this	last	lecture	of	the	course,	I	will	be	looking	at	how	adder	circuits	work.	
In	particular,	I	will	be	examining	the	implementation	of	adders	on	the	Cyclone	
V	FPGAs.		Furthermore,	since	Cyclone	V	also	contain	a	large	number	of	
multipliers	inside	DSP	blocks,	I	will	brief	explain	how	these	could	be	
instantiated.



3

The	building	block	for	an	n-bit	adder	is	a	one-bit	full	adder.		This	is	essentially	
a	component	that	adds	THREE	one-bit	values	together:	P	Q	and	CI.		It	
produces	two	outputs:	Sum	S,	and	Carry	C.

Note	that	all	three	inputs	are	symmetrical	– they	can	be	swapped	without	
any	change	in	the	outputs.

Further,	if	you	invert	all	inputs,	the	outputs	are	also	all	inverted.		This	is	
known	as	“self-dual”.		

The	Boolean	equation	for	C	and	S	are	shown	here.		This	is	something	that	has	
been	covered	from	the	first	year.



4

To	build	a	4-bit	adder	from	1-bit	full	adders,	we	can	connect	four	of	these	
serially	as	shown	here.	It	is	important	to	appreciate	that	this	4-bit	adder	
works	for	both	signed	and	unsigned	input,	provided	that	signed	numbers	are	
using	2’s	complement	representation.						In	other	words,	if	you	interpret	
input	as	unsigned	4-bit	numbers,	then	the	adder	produces	unsigned	5-bit	
output	(including	the	carry	out	signal).

If	you	interpret	the	input	as	2’s	complement	signed	numbers,	then	the	output	
is	correct	as	a	4-bit	SIGNED	output.		(In	this	case,	you	cannot	use	C3	as	the	5th
bit).



5

If	you	add	two	4-bit	numbers	together,	the	inputs	are	unsigned,	then	the	
output	will	be	in	the	range	of	0	to	30.		However,	if	you	want	to	use	the	adder	
for	signed	number	addition,	the	input	range	is	-8	to	+7,	therefore	the	output	
range	is	-16	to	+14.		In	both	cases,	we	would	need	5-bit	adder	to	avoid	any	
overflow.

For	the	unsigned	case,	you	could	use	the	carry	out	as	the	5th output	bit.		For	
now,	let	us	use	only	the	sum	output,	and	we	need	a	5-bit	adder.

For	signed	addition,	we	cannot	use	the	carry	out	as	the	5th bit.		We	MUST	use	
a	5-bit	adder.		So,	we	need	expand	the	input	numbers	from	4-bti	to	5-bit.		
What	do	we	do	with	the	MSB?



6

For	unsigned	numbers,	exampling	a	4-bit	number	to	an	8-bit	number	simply	
requires	adding	4	extra	‘0’ to	the	MSB	part	of	the	number.

For	signed	numbers,	we	need	to	extend	to	the	left	four	sign	bits	in	order	to	
preserve	the	signed	of	the	number	and	maintain	the	correct	value.		This	is	
known	as	“sign	extension”.



7

To	shrink	a	binary	number	to	smaller	number	of	bits,	it	is	easy	for	unsigned	
numbers	– simply	delete	all	leading	‘0’s	for	MSB.		The	value	of	the	unsigned	
number	will	not	change.

For	signed	numbers,	if	the	MSB	is	0,	you	can	delete	all		‘0’ from	MSB	down	
except	the	last	‘0’.		If	the	MSB	is	‘1’,	you	can	delete	all	‘1’s	from	MSB	down	
except	the	last	‘1’.		In	that	way,	you	preserve	the	correct	sign	of	the	number.

You	can	also	shrink	the	number	of	bits	by	removing	unwanted	LSBs	through	
truncation.		Alternatively	you	can	perform	rounding.	

Truncation	is	easy	– to	reduce	an	8-bit	number	to	4-bit,	just	remove	the	least	
significant	4-bit.		

Rounding	is	harder,	and	there	are	various	method	of	rounding	that	can	be	
used.		The	simplest	method	in	the	case	of	8-bit	rounded	to	4-bits	is	to	add	
8’b00001000	to	the	number,	than	truncate	the	bottom	4-bit.		Basically,	you	
add	half	of	the	LSB	of	the	final	number	to	the	original	number	before	
chopping	off	the	lower	bits.	This	is	the	same	as	how	we	round	with	decimal	
numbers.



8

In	order	to	avoid	overflow	when	adding	two	4-bit	numbers	together,	we	need	
to	use	a	5-bit	adder.		For	unsigned	add,	we	zero	extend	the	input	sto	5-bit	and	
then	use	a	5-bit	adder	to	produce	S4:0	as	shwon	here.

Of	course,	we	could	have	used	the	4-bit	adder	and	use	the	carry	out	C3	as	S4.



9

To	build	a	4-bit	signed	adder	WITHOUT	overflow,	we	need	to	first	extend	the	
input	to	5	bits	with	sign	extension	sa	shown	here.		Then	use	a	5-bit	adder	
circuit	to	produce	a	5-bit	signed	result.



10

Let	us	consider	the	propagation	delay	through	a	4-bit	adder.		The	worst	case	
path	is	from	P0	or	Q0	input,	then	pass	through	the	carry	chain	to	the	MSB	
sum	output.

Assuming	the	gate	delay	to	C	is	2	andto	S	is	3,	then	the	worst	case	delay	is	9.

This	is	called	a	ripple	carry	adder	because	the	carry	signal	has	to	propagate	all	
the	way	from	the	LSB	stage	to	the	MSB	stage.

An	example	scenario	for	the	worst	case	propagation	delay	is	shown	here.		If		
initially	P=4’b0000	and	Q=4’b1111,	the	S=5’b10000.

Now	if	P	changes	to	4’b0001,	then	this	‘1’ in	the	LSB	is	propagated	all	the	way	
to	S4.		The	worst-case	path	is	exercised.



11



12



13

We	have	already	discussed	the	inside	structure	of	the	FPGA	in	Lecture	2.		
Here	is	a	reminder.
The	Altera	Cyclone	V	FPGA	has	a	more	advanced	programmable	logic	
element	than	the	simple	4-input	LUT	that	we	have	considered	up	to	now.		
The	call	this	a	Adaptive	Logic	Module	or	ALM.		

An	ALM	can	take	up	to	8	Boolean	input	signals	and	produces	four	outputs	
with	or	without	a	register.		Additionally,	each	ALM	also	can	perform	the	
function	of	a	2-bit	binary	full	adder.		This	is	what	interest	us	most	for	this	
lecture.

As	a	user	of	the	Cyclone	V	FPGA,	you	don’t	actually	need	to	worry	too	much	
about	exactly	how	the	ALM	is	configured	to	implement	your	design.		The	CAD	
software	will	take	care	of	the	mapping	between	your	design	and	the	physical	
implementation	using	the	ALMs.		It	is	however	useful	to	know	that	as	the	
technology	evolves,	more	and	more	complicated	programmable	logic	
elements	are	being	developed	by	the	manufacturers	in	order	to	improve	the	
area	utilization	of	the	FPGAs.

The	Cyclone	V	on	the	DE1-SOC	board	has	32,000	ALMs,	which	could	be	
estimated	to	be	equivalent	to	85K+	the	old	style	LEs.		Putting	this	in	context,	



you	could	put	onto	this	one	chip	2,000	32-bit	binary	adder	circuits!

13



14



15

Given	that	the	FPGA	has	special	adder	mode,	you	should	never	specify	your	
adder	as	individual	full	adder	circuits	connected	together.		The	synthesis	
system	WILL	NOT	be	able	to	exploit	the	dedicated	adder	mode	configuration	
shown	in	the	previous	slide.		Instead	use	the	‘+’ operator	in	Verilog	as	shown	
here.		It	is	simpler	and	will	produce	a	very	fast	adder.



16

How	fast	are	adders	within	a	typical	FPGA?		Here	is	an	n-bit	adder	circuit	
sandwiched	between	registers.		The	plot	is	based	on	a	Cyclone	III	FPGA.	(I	
don’t	have	the	data	for	Cyclone	V.)

We	can	use	the	timing	analyzer	to	estimate	how	fast	we	can	clock	this	circuit	
without	error	as	the	number	of	bits	n	is	increased	from	1	to	64.			The	
equation	of	the	red	fitted	line.		This	shows	that	each	adder	bit	adds	around	
57ps	delay.		In	addition,	there	is	a	1.8	ns	delay	from	clock	to	Q	+	register	
setup	time.		I	expect	the	timing	for	the	Cyclone	V	devices	to	be	faster.



17

Older	FPGA	(s.g.	Cyclone	III)	has	embedded	multipliers	to	make	
implementation	of		digital	signal	processing	algorithms	more	efficient	on	the	
FPGA.		Cyclone	V	has	DSP	support	far	superior	to	just	simple	configurable	
multipliers.
The	DSP	blocks	on	the	Cyclone	V	can	be	used	for	a	combination	of	different	
functions.		It	can	do	multiplication	of	different	precision	and	also	to	perform	
multiply-accumulate	function.	
Accumulator	is	an	adder	whose	output	is	used	as	one	of	the	two	inputs	of	
the	adder	on	the	next	clock	cycle.		Therefore	an	accumulator	usually	only	has	
one	input,	whose	value		get	“accumulated” cycle-by-cycle.
The	DSP	block	also	has	internal	storage	to	store	a	constant	value.	Typically	
this	is	a	filter	coefficient	for	implementing	a	finite-impulse	response	(FIR)	
filter.		Detail	of	how	to	use	DSP	block	to	implement	one	tap	(or	one	stage)	of	
a	FIR	filter	is	beyond	the	scope	of	this	course.		Those	interested	can	read	
Cyclone	V	Devices	Handbook,	Vol.	1,	p.		3-17.



18

For	this	lecture,	we	concentrate	on	the	configurable	multipliers	in	the	DSP	
block.		Each	DSP	block	can	be	configured	as	three	9	x	9	multipliers.		This	is	
particularly	useful	for	real-time	video	processing	since	each	pixel	values	are	
often	represented	as	an	8-bit	unsigned	value	(or	3	x	8	bit	unsigned	number	if	
we	are	using	colour).
Alternatively,	each	block	can	provide	TWO	18	x	18	bit,	or	one	27	x27	bit	
multiplier(s).		Of	course	if	you	need	lower	number	of	bits	(say	14	x	14),	you	
can	always	either	zero-extend,	or	sign-extend	the	operands	to	fit	and	use	the	
18	x	18	multiplier.
Each	multiplier	can	also	be	configured	to	operate	with	the	adder	or	the	
accumulator	at	the	output.
It	is	important	to	understand	that	when	you	multiply	two	N	x	M	bits	unsigned	
numbers	together,	you	get	a	product	which	is	N+M	bits.			The	same	also	
applies	if	you	multiply	one	signed	and	one	unsigned	number	together.		You	
can	try	this	yourself	for	two	four-bit	numbers!
However,	if	you	multiply	two	signed	2’s	complement	numbers	together,	you	
get	a	product	that	is	only	N+M-1	bits.		The	top	two-bits	are	always	the	same	
and	they	both	provide	the	sign	of	the	product	value	(i.e.	you	get	two	identical	
sign	bits	in	the	product).	Again	try	this	yourself	with	two	4-bit	signed	
multiplication.



19

If	you	configure	a	DSP	block	to	be	THREE	9	x	9	multipliers,	the	two	input	
operands	ax	and	ay	are	bit-cascade	to	form	a	27	bit	input	values	to	the	DSP	
block	as	shown	above.		Similar,	the	three	products	are	provided	as	three	18-
bit	RESULT	value	as	a	54-bit	value.



20

To	instantiate	multipliers	in	a	Cyclone	V,	we	can	use	the	IP	Catalog	tool	under	
Quartus.		Multiplier	is	shown	under	Library	>	Basic	Functions	>	Arithmetic	
category.		You	should	choose	LPM_MULT.				A	dialogue	form	will	pop	up.	You	
can	then	create	the	type	of	multiplier	you	need	for	your	design.
Shown	above	is		a	10	bit	x	14	bit	multiplier	used	in	ex15	in	Part	3	of	VERI.		The	
10-bit	input	is	the	frequency	value	specified	by	the	switches	or	the	ADC,	and		
the	14-bit	is	the	multiplying	constant	14’d10000.


